Where am I? > Home > Articles > Volume 46
Research article

https://doi.org/10.48027/hnb.46.061

Species-specific and environment-sensitive functional traits in six steppe plant species with different roles in community


Shinekhuu Tumurjav https://orcid.org/0000-0001-9167-1368; Larissa Ivanova https://orcid.org/0000-0003-2363-9619; Yurii Rupyshev https://orcid.org/0000-0003-2305-7889; Svetlana Migalina https://orcid.org/0000-0002-0236-1972; Sergey Bazha https://orcid.org/0000-0003-2305-7889; Leonid Ivanov https://orcid.org/0000-0001-6900-5086

3 June 2024 · volume 46 · (issue 6) · pp. 147–163 · PDF [full text]

Abstract: Plant functional traits are often considered as indicators of plant-environment relationship; however, some plant features can be highly taxonomic-specific. The study of intraspecific trait variation is essential to understand what functional traits are influenced by the phylogeny and what traits are more dependent on environment. We studied six common steppe plant species in two natural vegetation plots near lake Baikal in Southern Siberia different in climate aridity and grazing degree: site 1 – native true grass steppe under lower climate aridity, site 2 – high disturbed sagebrush steppe under higher aridity. Plant functional traits showed different relevance to species and environment. Plant height, leaf thickness (LT), mesophyll cell volume (Vcell), and the chloroplast number per cell had the greatest contribution to differences between species and varied slightly within a species. Photosynthesis (Amax) and transpiration (E) rates, chlorophyll content, mesophyll surface area per leaf area unit (Ames/A) were more dependent on environment than on species. Amax and E decreased in all studied species in more adverse conditions of site 2, however plants differed in mechanisms of these changes. In Stipa krylovii, Artemisia frigida and Potentilla acaulis, most abundant in true steppe (site 1) mesophyll cell sizes, cell and chloroplast number per leaf area decreased in site 2. Other species, Artemisia scoparia, Potentilla bifurca and Allium anisopodium which were more abundant in disturbed steppe (site 2), had larger cells and showed an increase in cell and chloroplast number per leaf area in site 2 and decrease in the photosynthetic capacity of a chloroplast. We concluded that the leaf thickness and cell size belong to species-specific features, whereas Amax, pigment content and integral mesophyll traits as Ames/A are more indicative for plant-environment relationships and their response to growth conditions depend on the ecological strategy of a species.

Keywords: cell volume, chlorophyll content, leaf structure, mesophyll, photosynthesis, plant height

References [60]

Adler P.B., Salguero-Gomez R., Compagnoni A., Hsu J.S., Ray-Mukherjee J., Mbeau-Ache C., Franco M. 2014 Functional traits explain variation in plant life history strategies. Proceedings of the National Academy of Sciences 111 (2): 740–745. https://doi.org/10.1073/pnas.1315179111
Bazha S.N., Gunin P.D., Danzhalova E.V., Drobyshev Yu.I., Kazantseva T.I., Ariunbold E., Myagmarsuren D., Khadbaatar S., Tserenkhand G. 2015 Invasive successions as the indicator of desertification of dry steppe by way of example of Central Mongolia. Russian Journal of Biological Invasions 6 (4): 223–237. https://doi.org/10.1134/S2075111715040025
Bazha S.N., Gunin P.D., Danzhalova E.V., Drobyshev Yu.I., Prishcepa A.V. 2012 Pastoral Degradation of Steppe Ecosystems in Central Mongolia. In: Werger M.J.A., Staalduinen M.A. (eds) Eurasian Steppes. Ecological Problems and Livelihoods in a Changing World. Plant and Vegetation 6, Springer, pp. 289–319. https://doi.org/10.1007/978-94-007-3886-7_10
Bruelheide H., Dengler J., Purschke O. et al. 2018 Global trait–environment relationships of plant communities. Nature Ecology and Evolution 2: 1906–1917. https://doi.org/10.1038/s41559-018-0699-8
Cornwell W.K., Ackerly D.D. 2009 Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecological Monographs 79 (1): 109–126. https://doi.org/10.1890/07-1134.1
de Bello F., Mudrák O. 2013 Plant traits as indicators: loss or gain information. Applied Vegetation Science 16 (3): 353–354. https://doi.org/10.1111/avsc.12035
de Frenne P., Graae B.J., Rodríguez-Sanchez F., Kolb A., Chabrerie O., Decocq G., de Kort H., An De Schrijver A., Diekmann M., Eriksson O., Gruwez R., Hermy M., Lenoir J., Plue J., Coomes D.A., Verheyen K. 2013 Latitudinal gradients as natural laboratories to infer species’ responses to temperature. Journal of Ecology 101 (3): 784–795. https://doi.org/10.1111/1365-2745.12074
Díaz S., Hodgson J.G., Thompson K., Cabido M., Cornelissen J.H.C., Jalili A., Montserrat-Martí G., Grime J.P., Zarrinkamar F., Asri Y., Band S.R., Basconcelo S., Castro-Díez P., Funes G., Hamzehee B., Khoshnevi M., Pérez-Harguindeguy N., Pérez-Rontomé M., Shirvany F., Vendramini F., Yazdani S., Abbas-Azimi R., Bogaard A., Boustani S., Charles M., Dehghan M., de Torres-Espuny L., Falczuk V., Guerrero-Campo J., Hynd A., Jones G., Kowsary E., Kazemi-Saeed F., Maestro-Martínez M., Romo-Díez A., Shaw S., Siavash B., Villar-Salvador P., Zak M.R. 2004 The plant traits that drive ecosystems: evidence from three continents. Journal of Vegetation Sciences 15: 295–304. https://doi.org/10.1111/j.1654-1103.2004.tb02266.x
Evans J.R., Kaldenhoff R., Genty B., Terashima I. 2009 Resistances along the CO2 diffusion pathway inside leaves. Journal of Experimental Botany 60 (8): 2235–2248. https://doi.org/10.1093/jxb/erp117
Flexas J., Barbour M.M., Brendel O., Cabrera H.M., Carriquí M., Díaz-Espejo A., Douthe C., Dreyer E., Ferrio J.P., Gago J., Gallé A., Galmés J., Kodama N., Medrano H., Niinemets Ü., Peguero-Pina J.J., Pou A., Ribas-Carbó M., Tomás M., Tosens T., Warren C.R. 2012 Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Science 193: 70–84. https://doi.org/10.1016/j.plantsci.2012.05.009
Fonseca C.R., Overton J.M., Collins B., Westoby M. 2000 Shifts in trait-combinations along rainfall and phosphorus gradients. Journal of Ecology 88: 964–977. https://doi.org/10.1046/j.1365-2745.2000.00506.x
Galmés J., Flexas J., Medrano H., Niinemets Ü., Valladares F. 2012 Ecophysiology of photosynthesis in semi-arid environments. In: Flexas J., Loreto F., Medrano H. (eds) Terrestrial Photosynthesis in a Changing Environment. A Molecular, Physiological and Ecological Approach. Cambridge University Press. pp. 448–464. https://doi.org/10.1017/CBO9781139051477.035
Gamalei Yu.V. 1984 Leaf Anatomy of Plants in the Gobi Desert. Botanical Journal 69: 569–584. (In Russian)
Garnier E., Cortez J., Billès G., Navas M.L., Roumet C., Debussche M., Laurent G., Blanchard A., Aubry D., Bellmann A., Neill C., Toussaint J.P. 2004 Plant functional markers capture ecosystem properties during secondary succession. Ecology 85 (9): 2630–2637. https://doi.org/10.1890/03-0799
Garnier E., Navas M.L. 2012 A trait-based approach to comparative functional plant ecology: concepts, methods and applications for agroecology. A review. Agronomy for Sustainable Development 32 (2): 365–399. https://doi.org/10.1007/s13593-011-0036-y
Gillison A.N. 2019 Plant functional indicators of vegetation response to climate change, past present and future: I. Trends, emerging hypotheses and plant functional modality. Flora 254: 12–30. https://doi.org/10.1016/j.flora.2019.03.013
Grime J.P. 1998 Benefits of plant diversity to ecosystems: immediate, filter and founder effects. Journal of Ecology 86 (6): 902–910. https://doi.org/10.1046/j.1365-2745.1998.00306.x
Grime J.P. 2001 Plant Strategies, Vegetation Processes, and Ecosystem Properties. Second edition. John Wiley and Sons, Chichester.
Gunin P.D., Bazha S.N., Danzhalova E.V., Dmitriev I.A., Drobyshev Yu.I., Kazantseva T.I., Miklyaeva I. M., Ogureeva G.N., Slemnev N.N., Titova S.V., Ariunbold E., Battseren C., Jargalsiakhan L. 2012 Expansion of Ephedra sinica Stapf. in the Arid Steppe Ecosystems of Eastern and Central Mongolia. Arid ecosystems 2 (1): 18–33. https://doi.org/10.1134/S2079096112010052
Gunin P.D., Bazha S.N., Danzhalova E.V., Drobyshev Yu.I., Ivanov L.A., Ivanova L.A., Kazantseva T.I., Migalina S.V., Miklyaeva I. M., Ronzhina D.R., Ariunbold E., Khadbaatar S., Tsooj Sh., Tserenkhand G. 2015 Regional features of desertification processes of ecosystems on the border of the Baikal basin and Central Asian internal drainage basin. Arid ecosystems 5: 117–133. https://doi.org/10.1134/S2079096115030063
Hassiotou F., Renton M., Ludwig M., Evans J.R., Veneklaas E.J. 2010 Photosynthesis at an extreme end of the leaf trait spectrum: how does it relate to high leaf dry mass per area and associated structural parameters? Journal of Experimental Botany 61 (11): 3015–3028. https://doi.org/10.1093/jxb/erq128
Havstad K.M., Herrick J.E., Tseelei E. 2008 Mongolia’s rangelands: Is livestock production the key to the future? Frontiers in Ecology and the Environment 6 (7): 386–391. https://doi.org/10.1890/1540-9295(2008)6[386:MRILPT]2.0.CO;2
Hunt L.P. 2010 Spatial variation in the demography and population dynamics of a perennial shrub (Atriplex vesicaria) under sheep grazing in semi-arid Australian rangelands. Austral Ecology 35 (7): 794–805. https://doi.org/10.1111/j.1442-9993.2009.02087.x
Ivanov L.A., Ivanova L.A., Ronzhina D.A., Chechulin M.L., Tserenkhand G., Gunin P.D., Pyankov V.I. 2004 Structural and Functional Grounds for Ephedra sinica Expansion in Mongolian Steppe Ecosystems. Russian Journal of Plant Physiology 51 (4): 469–475. https://doi.org/10.1023/B:RUPP.0000035738.89102.fc
Ivanov L.A., Ivanova L.A., Ronzhina D.A., Yudina P.K., Shinekhuu T., Tserenkhand Ts., Bazha S.N., Gunin P.D. 2018 Climate and grazing effects on the biomass and photosynthetic capacity of dominant species in Mongolia steppe communities. KnE Life Sciences 4 (7): 64–71. https://doi.org/10.18502/kls.v4i7.3221
Ivanov L.A., Migalina S.V., Ronzhina D.A., Shinekhuu T., Tserenkand G., Bazha S. N., Ivanova L.A. 2022 Altitude-dependent variation in leaf structure and pigment content provides the performance of a relict shrub in mountains of Mongolia. Annals of Applied Biology 181 (3): 321–331. https://doi.org/10.1111/aab.12778
Ivanova L.A. 2014 Adaptive Features of Leaf Structure in Plants of Different Ecological Groups. Russian Journal of Ecology 45: 107–115. https://doi.org/10.1134/S1067413614020027
Ivanova L.A., Chanchikova A.G., Ronzhina D.A., Zolotareva N.V., Kosulnikov V.V., Kadushnikov R.M., Ivanov L.A. 2016 Leaf acclimation to experimental climate warming in meadow plants of different functional types. Russian Journal of Plant Physiology 63 (6) 849–860. https://doi.org/10.1134/S102144371605006X
Ivanova L.A., Ivanov L.A., Ronzhina D.A., Yudina P.K., Migalina S.V., Shinekhuu T., Tserenkhand G., Voronin P.Yu., Anenkhonov O.A., Bazha S.N., Gunin P.D. 2019 Leaf traits of C3- and C4-plants indicating climatic adaptation along a latitudinal gradient in Southern Siberia and Mongolia. Flora 254: 122–134. https://doi.org/10.1016/j.flora.2018.10.008
Ivanova L.A., Yudina P.K., Ronzhina D.A., Ivanov L.A., Hölzel N. 2018 Quantitative mesophyll parameters rather than whole-leaf traits predict response of C3 steppe plants to aridity. The New Phytologist 217 (2): 558–570. https://doi.org/10.1111/nph.14840
Ivanova L.A., Zolotareva N.V., Ronzhina D.A., Podgaevskaya E.N., Migalina S.V., Ivanov L.A. 2018 Leaf functional traits of abundant species predict productivity in three temperate herbaceous communities along an environmental gradient. Flora 239: 11–19. https://doi.org/10.1016/j.flora.2017.11.005
Jäschke Y., Heberling G., Wesche K. 2019 Environmental controls override grazing effects on plant functional traits in Tibetan rangelands. Functional Ecology 34 (11): 747–760. https://doi.org/10.1111/1365-2435.13492
Jung V., Albert C.H., Violle C., Kunstler G., Loucougaray G., Spiegelberger T. 2014 Intraspecific trait variability mediates the response of subalpine grassland communities to extreme drought events. Journal of Ecology 102 (1): 45–53. https://doi.org/10.1111/1365-2745.12177
Laisk A., Oya V., Rakhi M. 1970 Anatomy-dependent diffusion resistance in leaves. Soviet Plant Physiology 17: 40–48.
Lambers H., Chapin III F.S., Pons T.L. 1998 Responses to Availability of Water. In: Plant Physiological Ecology. Springer, pp: 50–55.
Lichtenthaler H.K., Wellburn A.R. 1983 Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions 603: 591–592.
Loranger J., Shipley B. 2010 Interspecific covariation between stomatal density and other functional leaf traits in a local flora. Botany 88 (1): 30–38. https://doi.org/10.1139/B09-103
Migalina S.V., Ivanova L.A., Makhnev A.K. 2014 Genetically determined volume of mesophyll cells of birch leaves as an adaptation of the photosynthetic apparatus to climate. Doklady Biological Sciences 459: 354–357.
Miklyaeva I.M., Gunin P.D., Slemnev N.N., Bazha S.N., Fakhire A. 2004 Disturbance of vegetation in steppe ecosystems. Arid ecosystems 10 (24–25): 35–46.
Mokronosov A.T. 1981 Ontogeneticheskii aspekt fotosinteza [Developmental Aspects of Photosynthesis]. Nauka, Moscow. (In Russian)
Nicotra A.B., Atkin O.K., Bonser S.P., Davidson A.M., Finnegan E.J., Matheius U., Poot P., Purugganan M.D., Richards C.L., Valladares F., van Kleunen M. 2010 Plant phenotypic plasticity in a changing climate. Trends in Plant Science 15 (12): 684–692. https://doi.org/10.1016/j.tplants.2010.09.008
Niinemets Ü. 2001 Global-scale climatic controls of leaf dry mass per area, density, and thickness in trees and shrubs. Ecology 82 (2): 453–469. https://doi.org/10.1890/0012-9658(2001)082[0453:GSCCOL]2.0.CO;2
Nobel P.S., Walker D.B. 1985 Structure of leaf photosynthetic tissue. In: Barber J., Baker N.R. (eds) Photosynthetic mechanisms and environment. Elsevier, pp. 501–536.
Poorter H., Niinemets Ü., Ntagkas N., Siebenkäs A., Mäenpää M., Matsubara S., Pons T.L. 2019 A meta-analysis of plant responses to light intensity for 70 traits ranging from molecules to whole plant performance. New Phytologist 223 (3): 1073–1105. https://doi.org/10.1111/nph.15754
Poorter H., Niinemets Ü., Poorter L., Wright I.J., Villar R. 2009 Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytologist 182 (3): 565–588. https://doi.org/10.1111/j.1469-8137.2009.02830.x
Poorter L., Bongers F., Aide T.M., Almeyda Zambrano A.M., Balvanera P., Becknell J. M., Boukill V., Brancalion P.H.S., Jakovac A.C., Braga Junqueira A., Lohbeck M., Peña Claros M., Rozendaal D. 2016 Biomass resilience of Neotropical secondary forests. Nature 530 (7589): 211–214. https://doi.org/10.1038/nature16512
Pyankov V.I., Kondratchuk A.V., Shipley B. 1999 Leaf structure and specific leaf mass: the alpine desert plants of the Eastern Pamirs, Tadjikistan. New Phytologist 143: 131–142.
Reich P.B. 2014 The world-wide ‘fast-slow’ plant economics spectrum: a traits manifesto. Journal of Ecology 102 (2): 275–301. https://doi.org/10.1111/1365-2745.12211
Reich P.B., Wright I.J., Cavender-Bares J., Craine J.M., Oleksyn J., Westoby M., Walters M.B. 2003 The evolution of plant functional variation: traits, spectra, and strategies. International Journal of Plant Sciences 164 (3): 143–164. https://doi.org/10.1086/374368
Rozentsvet O.A., Bogdanova E.S., Ivanova L.A., Ivanov L.A., Tabalenkova G.N., Zakhozhiy I.G., Nesterov V.N. 2016 Structural and functional organization of the photosynthetic apparatus in halophytes with different strategies of salt tolerance. Photosynthetica 54 (3): 405–413.
Shipley B., de Bello F., Cornelissen J.H.C., Laliberte E., Laughlin D.C., Reich P.B. 2016 Reinforcing loose foundation stones in trait-based plant ecology. Oecologia 180 (4): 923–931. https://doi.org/10.1007/s00442-016-3549-x
Siefert A., Violle C., Chalmandrier L., Albert C.H., Taudiere A., Fajardo A., Aarssen L.W., Baraloto C., Carlucci M.B., Cianciaruso M.V., Dantas V.L., De Bello F., Duarte L.D.S., Fonseca C.R., Freschet G.T., Gaucherand S., Gross N., Hikosaka K., Jackson B., Jung V., Kamiyama C., Katabuchi M., Kembel S.W., Kichenin E., Kraft N.J., Lagerstrom A. Bagousse-Pinguet Y.L., Li Y., Mason N., Messier J., Nakashizuka T., Overton J.M.C., Peltzer D.A., Perez-Ramos I.M., Pillar V.D., Prentice H.C., Richardson S., Saski T., Schamp B.S., Schob C., Shipley B., Sundqvist M., Sykes M.T., Vandewalle M., Wardle D.A. 2015 A global meta-analysis of the relative extent of intraspecifc trait variation in plant communities. Ecology Letters 18 (12): 1406–1419. https://doi.org/10.1111/ele.12508
Terashima I., Hanba Y.T., Tholen D., Niinemets U. 2011 Leaf functional anatomy in relation to photosynthesis. Plant Physiology 155 (1): 108–116. https://doi.org/10.1104/pp.110.165472
van der Plas F. 2019 Biodiversity and ecosystem functioning in naturally assembled communities. Biological Reviews 94 (4): 1220-1245. https://doi.org/10.1111/brv.12499
Violle C., Navas M.L., Vile D., Kazakou E., Fortunel C., Hummel I., Garnier E. 2007 Let the concept of trait be functional! Oikos 116 (5): 882–892. https://doi.org/10.1111/j.2007.0030-1299.15559.x
Wieczynski D.J., Turner P.E., Vasseur D.A. 2018 Temporally Autocorrelated Environmental Fluctuations Inhibit the Evolution of Stress Tolerance. The American Naturalist 191 (6): E195–E207. https://doi.org/10.1086/697200
Xie L.-N., Guo H.-Y., Chen W.-Z., Liu Z., Gu S., Ma C.-C. 2018 Effects of grazing on population growth characteristics of Caragana stenophylla along a climatic aridity gradient. Rangeland Ecology and Management 71 (1): 98–105. https://doi.org/10.1016/j.rama.2017.07.005
Yudina P.K., Ivanov L.A., Ronzhina, D.A., Anenkhonov O.A., Ivanova L.A. 2020 Influence of the systematic position at the family level on steppe plant leaf traits. Siberian Journal of Ecology 5: 647–661. (In Russian) https://doi.org/10.15372/SEJ20200508
Yudina P.K., Ivanova L.A., Ronzhina D.A., Zolotareva N.V., Ivanov L.A. 2017 Variation of leaf traits and pigment content in three species of steppe plants depending on the climate aridity. Russian Journal of Plant Physiology 64 (3): 410-422. https://doi.org/10.1134/S1021443717020145
Zvereva G.K. 2000 Ecological and biological features of the plants of central Tuva steppes. Botanicheskii Zhurnal 85 (3): 29–39.

Supplementary materials [1]

01
Document title: Raw data
Kind of document: Microsoft Excel (OpenXML)
MIME type: application/vnd.openxmlformats-officedocument.spreadsheetml.sheet
Document name: 000551000462024-01.xlsx
https://doi.org/10.48027/hnb.46.061/01

— views: 646 (updated daily)

Cite as

Tumurjav Sh., Ivanova L., Rupyshev Yu, Migalina S., Bazha S., Ivanov L. 2024 Species-specific and environment-sensitive functional traits in six steppe plant species with different roles in community. Historia naturalis bulgarica 46: 147–163.

Export: BibTeX EndNote RefMan · JATS metadata

Open access
All journal content is available for free under the Creative Commons Attribution 4.0 International License (CC BY 4.0).